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Abstract

This study uses archival data from a social science behavioral lab and standard quantitative
tools from consumer research to generate the first empirical measure of how experimental costs
affect sample sizes. Researchers at this lab are sensitive to higher experimental costs, and more
specifically, to the amount of money or course credit needed to reimburse study participants.
Model estimates are used to assess counterfactual lab policies which, by lowering researchers’
costs, incentivize larger samples. At this lab, a 50% subsidy on cash reimbursements (normally
paid from individual research budgets) would have been expected to increase sample sizes by
35% among studies originally run with 50–200 participants. The method used for this analysis
provides a flexible approach to studying experimenter behavior and research policies at other
labs, and more generally, demonstrates the value of considering researchers’ decisions in a
consumption framework as part of efforts to improve scientific outcomes.
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1 Introduction

Scientists have finite resources to carry out their work. In the context of experimental or survey-

based research, this constraint means researchers typically choose sample sizes in the face of two

competing incentives. One is the incentive to gain knowledge about a population of interest with

maximum precision. Holding fixed the design of the experiment or survey, precision can be in-

creased by collecting a larger sample. But competing against this incentive is another: the desire

to minimize the time and expense needed to obtain that knowledge. Holding fixed a study’s design,

such costs can be decreased by collecting a smaller sample. Hence, in most situations, a study’s

sample size reflects a trade-off, at some level, between the higher precision of a bigger sample and

the lower cost of a smaller one (Blattberg 1979; Cohen 1992b; Allison et al. 1997; Gelman and

Carlin 2014).

A conflict can occur if these competing incentives lead researchers to make choices that are

misaligned with the goals of their stakeholders, whether they be funding agencies, journal editors,

or simply the broader scientific community (Dasgupta and David 1994). More specifically, re-

searchers might choose to conduct experiments with samples sizes which they deem sufficient to

answer a particular question, but which others consider inadequate or “underpowered” (i.e., having

too high a probability of false negative or Type II error). Consider, for example, a planned two-cell

experiment with 50 participants per condition, each of whom will be paid $5. Adding five partici-

pants to each cell would cost the researcher an additional $50, but also raise the study’s power. Is

the higher cost worth the higher chance of detecting a true effect? A researcher with limited funds,

but expecting only a small increase in power, might not think so, whereas others might (strongly)

disagree.

Low-powered studies have been a persistent problem in the social sciences for more than fifty

years. In a meta-analysis of results published in the Journal of Abnormal Psychology,Cohen (1962)

estimated (post hoc) median power to be .17, .46, and .89 for small, medium, and large effects—

meaning an experiment measuring a true difference in means of .15 standard deviations had just a
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1 in 6 chance of rejecting the null (at 𝛼 < .05). This surprising result spurred the development of

tools for conducting a priori “power analysis” (Cohen 1969) and helped to raise awareness about the

benefits of bigger samples. But in spite of these positive developments, subsequent replications of

Cohen’s analysis show that efforts to get experimental researchers to run higher-powered studies—

including better statistics training, free power calculation software, and innumerable editorials—

have historically had very little impact on their behavior (Sedlmeier and Gigerenzer 1989; Maxwell

2004; Shen et al. 2011; Marszalek et al. 2011).

There are numerous ways to increase experimental power, many of which have been encoded

as best practices in the area of experimental design (Allison et al. 1997; McClelland 2000; Abra-

ham and Russell 2008; Button et al. 2013). The focus of this paper, however, is on achieving

higher experimental power via larger samples after these design decisions have been made. There

is increasing recognition of the need for bigger samples, especially in light of recent concerns over

replicability in the social sciences (Cohen 1992b; Maxwell 2004; Ioannidis 2005; Shen et al. 2011;

Simmons et al. 2011; Bakker et al. 2012; Schimmack 2012; Asendorpf et al. 2013; Button et al.

2013; Miguel et al. 2014; Simmons 2014; Meyer 2015; however see Baumeister 2016 for coun-

terarguments). Moreover, as efforts to control false positive or Type I errors (which to date have

received greater attention than false negative rates) gain ground, the need for larger samples grows

more pressing (Fiedler et al. 2012; Simmons et al. 2013).

From the perspective of funding institutions and the broader scientific community, running

experiments with little chance of measuring the hypothesized phenomenon is wasteful in terms of

the money used to compensate participants, as well as researchers’ time (and not just that of the

experimenters themselves, but also those who rely on published results, which are more likely to

be erroneous; Button et al. 2013). This paper seeks to provide an answer to the question of how an

institution might incentivize a researcher who would otherwise run a study with a smaller sample

(as measured by some external standard), to instead run that same study with a bigger sample.

Unlike previous work which has only considered researchers in their role as producers of new

knowledge (Stephan 1996; Dasgupta and David 1994), this paper takes a different approach by
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considering researchers in their role as consumers of the information generated by their study par-

ticipants. Under this approach, one can think of each additional study observation “consumed”

by the researcher as increasing the expected payoff from running the study, but at the same time

increasing its total cost. The researcher deciding whether to add 10 more participants at a cost of

$50 is seen as weighing these higher costs against an expected change in reward due to running a

higher-powered study.

Framing the experimenter’s choice of sample size this way—as a trade-off between better sci-

ence and higher costs—immediately highlights two broad strategies that could potentially increase

researchers’ willingness to collect larger samples. One strategy would be to increase the benefits

of running experiments with larger samples, but this approach is problematic because the rewards

from obtaining publishable results are extremely high (Nosek et al. 2012; Button et al. 2013; Miguel

et al. 2014), and researchers already face strong incentives favoring large samples (Maxwell 2004).

Indeed, the strong incentive researchers have to yield publishable results is frequently blamed as a

root cause for the prevalence of small samples and other practices leading to Type I errors (Ioanni-

dis 2012b; Button et al. 2013). The other strategy is to decrease the costs associated with collecting

bigger samples. Indeed, if we think of researchers as consumers of experimental samples who

incur higher costs (in terms of money or time and effort) whenever they collect data, then cost-

reducing policies implemented at the institutional level would seem to be a straightforward route

to incentivizing bigger samples.

The primary obstacle to designing such policies, however, is a lack of empirical research mea-

suring the relationship between experimental costs and sample sizes. Although previous studies

have explicitly addressed the trade-off between the costs and benefits of conducting experiments,

this work has been either theoretical or prescriptive (Blattberg 1979; Ginter et al. 1981; Sawyer and

Ball 1981; Chatterjee et al. 1988; Cohen 1992a; Allison et al. 1997; Moscarini and Smith 2002;

Winkens et al. 2006). Missing from this literature are empirical studies measuring how much ex-

perimental costs actually influence sample sizes. Such measurements are needed to assess whether

the expected gains from new policies would be likely to offset their implementation costs.

4



The goals of this paper, therefore, are the following: 1) to provide the first empirical measure

of how researcher costs affect sample sizes and experimental power at a behavioral laboratory,

2) to assess for this particular lab how sample sizes might have increased under counterfactual

institutional policies that would have lowered researchers’ experimental costs, and 3) to provide a

general methodology, based on standard tools from consumer research, that can be used to study

researcher behavior and evaluate cost-lowering policies at other labs.

With these objectives in mind, an empirical model of experimental sample sizes is estimated

from data describing experiments conducted at the same behavioral laboratory by a diverse group

of social scientists. These data are unique to the literature and provide a much-needed view into

how behavioral researchers conduct their work on a day-to-day basis.

Previous studies have only considered sample sizes as reported in published journal articles

(Cohen 1962; Sawyer and Ball 1981; Sedlmeier and Gigerenzer 1989), which are subject to publi-

cation bias (the so-called “file drawer” problem; Rosenthal 1979). This study, however, uses data

obtained directly from the lab’s participant scheduling system, and thus includes information about

both published and unpublished experiments. Inclusion of the latter group is a crucial step in ob-

taining an accurate measurement of how costs affect sample sizes, and a novel contribution of this

paper.

The empirical model treats observed sample sizes as the outcome of a choice process that weighs

the expected benefit from running the experiment against two types of cost: 1) the amount paid to

each participant, and 2) the time spent collecting data. Researchers in this model pay to consume

the information provided by study participants, and hence their chosen sample sizes reveal their

preference for larger samples and sensitivity to higher costs.

This modeling approach borrows heavily from standard quantitative techniques for understand-

ing consumers in other choice settings, in which the choice model is a simple approximation of a

more complex decision process, but one that includes many of the factors that might be important

to the decision maker (and thus useful for the policy maker to understand). Accordingly, the pur-

pose of this exercise is not to show that experimental costs matter—we already know this. Rather,
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the goal is to measure how much these costs affect sample sizes so that we can design better insti-

tutional policies. Estimates show, for example, that the disutility from reimbursing participants at

this lab has a far greater effect on sample sizes than the time required to collect the observations.

This suggests that policies aimed at reducing the amount researchers must reimburse participants

(e.g. via subsidies) would be more effective at this lab than policies aimed at reducing the number

of days needed to collect a bigger sample.

Using the model estimates, cost-lowering policies are simulated in order to understand how

these might have affected researchers’ chosen sample sizes. These simulations confirm that subsi-

dizing participant reimbursements has the potential to meaningfully reduce the disincentive against

obtaining a bigger sample. Even more importantly, these simulations generate estimates for the

magnitude of these gains. A 50% subsidy in cash reimbursements, for example, would be expected

to increase sample sizes on average by as much as 35% at this lab. Finally, survey data reported

in Gervais et al. (2015) are used to estimate how these increases in sample size might translate to

increases in experimental power, providing an alternative metric for understanding the expected

impact of the counterfactual policies.

2 How Costs Can Affect Sample Size and Experimental Power

Before presenting the data, analysis procedure, and results, it is helpful to illustrate how costs

can affect sample size (and by extension, experimental power)—even when the researcher is well

trained and highly scrupulous—by comparing two stylized approaches to choosing a hypothetical

sample size for a simple, preregistered, confirmatory experiment.1 The first approach is based

on Cohen’s (1969; 1992) suggestion to power studies at no less than .80; the second on expected

utility maximization (Sawyer and Ball 1981; Gelman and Carlin 2014). Details relevant to both
1Although the assumption of a scrupulous and well-trained researcher is not necessary for the arguments advanced

in this section, it highlights an important point: The goals of the institution and researcher can be misaligned for reasons
that have nothing to do with the related, but different problem of Type I, or false positive, error control. Consequently,
researchers who are experts in statistics, who always pre-register their experiments, and who never “𝑝-hack” (Simon-
sohn et al. 2014), may nevertheless make well-informed decisions about experimental power and sample size that seem
fine to them, but look like bad science to interested and well-meaning observers (Button et al. 2013).
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Table 1 Prior Beliefs, Results, and Payoffs from a Hypothetical Experiment

PRIOR BELIEFS EXPERIMENT EXPECTED PAYOFFS

State Probability Result Probability Amount Probability Description

𝐻 𝑞 𝐵 1 − 𝛽𝑛 𝑢(𝐵, 𝐻) 𝑞 (1 − 𝛽𝑛) Null rejected
𝐻 𝑞 𝐴 𝛽𝑛 𝑢(𝐴, 𝐻) 𝑞𝛽𝑛 Type II error
𝐿 1 − 𝑞 𝐴 1 − 𝛼𝑛 𝑢(𝐴, 𝐿) (1 − 𝑞) (1 − 𝛼𝑛) Null not rejected
𝐿 1 − 𝑞 𝐵 𝛼𝑛 𝑢(𝐵, 𝐿) (1 − 𝑞) 𝛼𝑛 Type I error

approaches are discussed first.

2.1 A Hypothetical Experiment

A researcher must choose a sample size, 𝑛, for a two condition (between subjects) test of a simple

hypothesis. Each participant is reimbursed at a rate of 𝑝 (although units are irrelevant here, one

can think of costs and payoffs in money terms). 𝐻 denotes the state of the world in which the

hypothesized effect truly exists (i.e., the alternative hypothesis is correct), and 𝐿 the state of the

world in which it does not (i.e., the null is correct). Initially, the researcher believes the effect is

real (i.e., we are in state 𝐻) with probability 𝑞, and if it exists, has a standardized effect size 𝑑 ̄ = .3.

The experiment produces one of two outcomes, depending on whether a 𝑡-test rejects (result 𝐵) or

fails to reject (result 𝐴) the null.

With two experimental results and two potential states of the world, there are four possible

outcomes, as shown in Table 1. Each of these outcomes is associated with an expected payoff,

𝑢(⋅, ⋅). For example, the payoff from correctly detecting a true effect, 𝑢(𝐵, 𝐻), might reflect the
anticipated joy and increased future earnings that result from having an interesting finding to write

up and publish in an academic journal.

The expected Type I and II error rates are denoted 𝛼𝑛 and 𝛽𝑛. Theoretically both probabilities

depend on the chosen sample size, but in most applied settings 𝛼𝑛 is set to .05 for any sample size

𝑛, causing any increases in sample size to impact 𝛽𝑛 alone. Given the researcher’s hypothesis, prior

beliefs, expected payoffs, and costs, the next step is to choose a sample size 𝑛 for the experiment.
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Figure 1 Power Analysis Approach to Sample Size Selection for a Hypothetical Experiment

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80Target power .80

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

Target power exceeded at
n = 352 observations

0.2

0.5

0.8

100 200 300 400

Sample size

Po
w

er

Notes. Power calculations assume a 𝑡-test of the difference in sample means with expected effect
size 𝑑 ̄ = .3.

2.2 The Power Analysis Approach

The most widely endorsed normative approach to choosing sample size is to first conduct an ex

ante power analysis, then choose the smallest 𝑛 yielding Type I and II error rates less than .05 and

.20 respectively—i.e., experimental power, 1 − 𝛽𝑛, should be no less than .80 (Cohen 1969, 1992a,

1992b; Lenth 2001; VanVoorhis and Morgan 2007; Maxwell et al. 2008; Simmons et al. 2013).

Figure 1 shows how in this example, the target error rates are satisfied with at least 𝑛 = 352 (176

observations per condition).

Cohen (1969) first proposed setting 𝑛 to achieve a target power of .80, and although his sugges-

tion is widely known, the rationale behind the choice of .80 is not:

In scientific research, it is typically more serious to make a false positive claim (Type

I error) than a false negative one (Type II error). Because the implicit convention for

significance is 𝛼 = .05, the use of the .80 convention for desired power (hence, 𝛽 = .20)

makes the Type II error 4 times as likely as the Type I error, an arbitrary but reasonable

reflection of their relative importance (Cohen 1992b, p. 100).

Cohen intended .80 to be a default, not a strict requirement. Nevertheless, it has become a normative

standard in spite of being, in his words, “arbitrary.”

But more important than the arbitrariness of .80 is the following: Under the power analysis

approach, sample size depends on the expected effect size and target error rates. Conspicuously

absent from this decision calculus are: 1) the expected payoffs from the experiment’s outcomes,
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2) the researcher’s prior belief about the veracity of the hypothesis, and 3) the cost of collecting

data. The importance of these omitted factors provides a simple (albeit partial) explanation for

researchers’ collective failure to rely exclusively on ex ante power analysis when choosing sample

sizes, as illustrated next.

2.3 The Expected Utility Approach

Given the researcher’s prior beliefs and expected utilities, the expected payoff from the experiment

can be written as a function of the sample size 𝑛 (Moscarini and Smith 2002):

𝑉 (𝑛) = 𝑞 [ (1 − 𝛽𝑛) 𝑢(𝐵, 𝐻)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Null rejected

+ 𝛽𝑛𝑢(𝐴, 𝐻)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
Type II error

]
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

Effect exists (𝐻)
+ (1 − 𝑞) [ (1 − 𝛼𝑛) 𝑢(𝐴, 𝐿)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

Null not rejected

+ 𝛼𝑛𝑢(𝐵, 𝐿)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Type I error

]
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No effect (𝐿)
(1)

The payoff function 𝑉 (𝑛) is a weighted average of the expected utilities (the 𝑢’s), with the weights

determined by the researcher’s prior belief about the hypothesis (𝑞) and expected error rates (𝛼𝑛

and 𝛽𝑛). The expected error rates are themselves functions of the chosen statistical test, expected

effect size 𝑑,̄ and sample size 𝑛.

Because larger samples reduce the Type II error rate, the expected payoff is increasing in 𝑛,

𝑉 (𝑛 + 1) > 𝑉 (𝑛). But as 𝑛 gets very large, the improvement grows smaller and smaller, as shown

in Figure 2A. In other words, there are diminishing marginal returns from bigger samples, hence

𝑉 (𝑛 + 1) − 𝑉 (𝑛) < 𝑉 (𝑛) − 𝑉 (𝑛 − 1). Nevertheless, if obtaining observations were costless, the
researcher would include as many participants as possible in the experiment, since each additional

observation increases the experiments’s expected payoff.

Obtaining a massive sample, however, is not costless. Rather, each participant receives a pay-

ment of 𝑝, which leads to a total experimental costs that increases linearly in 𝑛, as shown in Figure

2B.

Because larger samples increase the expected payoff at an ever-diminishing rate, but increase

experimental costs at a constant rate, there is always a sample size 𝑛 at which the marginal benefit

from collecting the 𝑛 + 1th observation is less than its cost (Blattberg 1979; Moscarini and Smith
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Figure 2 Expected Payoff, Costs, and Payoff Net of Costs, from a Hypothetical Experiment
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(D) Expected Net Payoff with Additional Cost per Day
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Notes. The expected utilities in this example are 𝑢(𝐵, 𝐻) = 1,000𝑝, 𝑢(𝐴, 𝐻) = 100𝑝, 𝑢(𝐴, 𝐿) = 200𝑝, and 𝑢(𝐵, 𝐿) =
0; and the prior belief is 𝑞 = .5. Because the researcher in this example does not 𝑝-hack, true negatives generate greater
utility than false positives (hence 𝑢(𝐴, 𝐿) > 𝑢(𝐴, 𝐻)). Skeptical readers should note however that the expected
utilities, prior beliefs, and effect sizes chosen for this illustration have no bearing on the main qualitative result, and
for this reason, the figures do not show numerical units along the 𝑦-axes.
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2002). Hence, the researcher’s choice problem can be framed as one of expected utility maximiza-

tion:

choose 𝑛 > 0 to maximize 𝑉 (𝑛) − 𝐶(𝑛) , (2)

where 𝑉 (𝑛)−𝐶(𝑛) equals the experiment’s expected payoff, net of costs, given a sample size of 𝑛.

As Figure 2C shows, net expected payoff is highest in this toy example with a sample of 𝑛 = 182,

producing a study powered at .52.

Although this hypothetical experiment is powered lower than the normative standard of .80,

it is—to the researcher at least—optimal. Indeed, from the researcher’s perspective, it would be

difficult to justify powering this experiment at .80 given the high marginal cost and low marginal

benefit from any additional observations. Importantly, this result arises even though the researcher

preregistered the experiment, conducted a power analysis (recall the researcher calculates 𝛽𝑛 in

Equation (1)), and is (by assumption here) incapable of 𝑝-hacking.

Finally, if other costs bear on the researcher’s decision, the sample size may be even lower.

For example, Figure 2D shows what happens if a capacity constraint limits the experiment to 30

observations per day, and the experimenter incurs 2𝑝 of disutility for each day collecting data. In

this case, there are values of 𝑛 at which an additional observation would require one more day in

the lab, producing a sharp decline in net expected payoff. In the example in Figure 2D, the chosen

sample size is 𝑛 = 150, and the experiment is powered at .45.

2.4 Discussion

The purpose of this illustration is to show the simple but powerful influence experimental costs

exert over sample sizes. These contrasting choice models make a simple point: Cost-sensitive

researchers—even statistical experts who never cheat—face incentives leading to decisions that

are optimal from their perspective, but potentially suboptimal in the eyes of key stakeholders.

In contrast to other settings where we study consumption decisions, we hold researchers to a

normative standard in which they are not cost-sensitive, hence the power analysis approach is a

widely accepted normative model of sample size selection. But considering what we know about

11



consumer choice in other domains, it should come as no surprise that experiments powered greater

than .80 are the exception and not the rule.

Of course, one may re-cast the power approach as a special case of expected utility maximiza-

tion, wherein the cost function 𝐶(𝑛) is equal to infinity for every value of 𝑛 except the smallest

one achieving 𝛽𝑛 < .20. But the absurdity of this formulation only further illustrates how ask-

ing researchers to power experiments at .80, without simultaneously addressing their incentive to

minimize costs, will not likely change their behavior.

It should be stressed that the value of specifying expected payoffs as in Equation (1) comes

not from the equation’s formalism, but rather from its explicit consideration of researchers’ prior

beliefs and expected utilities. The point here is not to propose, either descriptively or normatively,

that researchers in the real world actually quantify their prior expectations and utilities as precise nu-

merical values. More likely, they follow the decision process in Equation (2) using a fairly accurate

accounting of 𝐶(𝑛), and a heuristic approximation to 𝑉 (𝑛) (Maxwell 2004). The approximation

to 𝑉 (𝑛) used for the empirical analysis has exactly this essential character.
But even though this model is a simplified approximation of a more complex choice process,

it still retains a great deal of flexibility. For example, many researchers rely on “rules of thumb”

when choosing sample sizes. However, as many have noted, researchers have many such rules to

choose from (Sawyer and Ball 1981; VanVoorhis and Morgan 2007; Maxwell et al. 2008). Hence

a researcher whose rule is “20 observations per cell” instead of “30 observations per cell,” or “50%

power” instead of “80% power,” has still chosen a level of statistical efficiency in the face of

experimental costs, and can therefore be described by Equation (2) (e.g., by restricting 𝑛 to values

permitted by the myriad rules of thumb available, 𝑛 ∈ 𝑚 × {10, 15, 20, 30, 50}, with 𝑚 equal to the

number of experimental conditions).

Although this paper is motivated by issues of Type II error control, Equation (1) can also speak

to how changes in Type I control affect sample sizes. First, because true false positive rates are

usually much greater than the nominal .05 (Simmons et al. 2011), improvements in research prac-

tices (e.g., study pre-registration) will yield more stringent significance levels, which in turn will
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correspond with lower power. Hence, as efforts to control false positive rates make further inroads,

researchers will need to work with bigger samples (Fiedler et al. 2012), but might not immediately

recognize the need to do so. Second, decreasing the payoff from false positive results (e.g., through

some sort of punishment) corresponds with a lower value of 𝑢(𝐵, 𝐿), thus shifting the curve in Fig-
ure 2C downward. This downward shift lowers the total expected value of the experiment—perhaps

making it less likely to be conducted in the first place—but leads to exactly the same optimal sample

size.

In order to design policies incentivizing the use of larger samples, it is not enough to simply

know that higher costs can lead to smaller samples. Rather, we need to empirically measure the

magnitude of this relationship. The next two sections present the data and model used to measure

this relationship at one particular lab.

3 Archival Lab Data

The data used for this study were obtained from the participant management system at the Erasmus

Behavioral Lab, a joint research facility operated by the Institute of Psychology and the Erasmus

Research Institute of Management at Erasmus University Rotterdam in the Netherlands. The data

describe all experiments conducted at the lab between the inception of a credit-reimbursed par-

ticipant pool on March 30, 2007 (a paid participant pool was introduced in October 2008), and

February 21, 2014. These experiments were performed by a diverse group of social science re-

searchers at all academic ranks (including graduate students), most of whom were affiliated with

one of three university divisions: the Faculty of Social Science, the Erasmus School of Economics,

and the Rotterdam School of Management (RSM). The most active users of the lab were affiliated

with RSM (and in particular, the Department of Marketing Management).

The data are organized according to whether participants were reimbursed with course credit

(“credit pool”) or money (“paid pool”), and include (among other variables) each experiment’s title

and description, expected duration, amount of money or course credit paid to participants, and a list

of researchers associated with the study. Titles, descriptions, and experimenter lists identify and
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Figure 3 Sample Sizes over Time
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Notes. Each point represents an experiment. Empty vertical regions correspond with the summer and winter holidays.
The LOESS regression line (with 95% CI in grey) shows typical sample sizes have not changed much over time.

link a subset of experiments that included participants drawn from both pools.

3.1 Experiments

For each experiment, the data indicate the exact timing of each participant’s involvement in the

study. From this, the total sample size, number of days in the lab, number and timing of obser-

vations on the last day of data collection, and other statistics are calculated. A small number of

observations describe experiments for which data collection took place outside the behavioral lab

(e.g., at the nearby Erasmus Medical Center). As this analysis seeks in part to understand how time

in the lab influences sample sizes, these experiments are excluded from the analysis (this decision

preceded any statistical analysis of the data; please see Appendix A for further details regarding

data preparation). The data used for estimation describe 683 experiments (63% in the credit pool,

26% in the paid pool, and 11% in both) associated with 134 researchers.

Figure 3 illustrates how activity within the lab varied over time. Although there is strong evi-

dence of seasonal variation in lab use due to summer andwinter holidays, there is no clear indication

that average sample sizes have changed much over the 7 years recorded in the archival data.

Sample sizes do differ significantly between experiments conducted exclusively in the paid and

credit pools, as shown in Figure 4. The median sample size across all studies is 89, but 102 for

credit pool-only studies and 47 for paid pool-only studies (114 for studies using both pools). This

diversity suggests there may be systematic differences in the types of experiments conducted in the

two participant pools. For example, paid studies might differ from others due to the availability of
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Figure 4 Distribution of Sample Size by Participant Pool

0 100 200 300 400 500 600

Sample size
D

en
si

ty

Participant pool: Credit only Credit and paid Paid only

Notes. Contours represent kernel-smoothed densities of sample sizes in the three participant pools. Vertical lines mark
median sample sizes.

money-incentive manipulations, non-student or more attentive respondents, a higher prevalence of

pre-tests, etc.

3.2 Researchers

Experiments vary systematically depending on the number of researchers involved. The median

sample size is 76 among the 71% of experiments conducted by one researcher, but 117 among the

25% associated with 2–3, and 155 among the 4% associated with 4–7. The nature of these col-

laborations is not observed. In many cases, one or more of the collaborators is a graduate student

(possibly a research assistant); in other cases, collaborators have combined multiple unrelated ex-

periments into a single session. Both suggest teams of researchers might have pooled resources,

possibly in order to obtain bigger samples (Stephan 1996).

The only data describing individual researchers are their email addresses. In many cases these

identify affiliated institutions or whether researchers are graduate students or faculty. A small

number of groups are defined, and each researcher is assigned to one. These groupings provide

a source of observed heterogeneity, and their inclusion in the model improves its efficiency. But

because understanding differences in sample sizes across groups of researchers is beyond the scope

of this paper, and moreover, because presenting results related to these data could be harmful to

specific researchers, these results are not reported numerically.
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Figure 5 Distribution of Timing of Final Observations by Time of Day
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Notes. Stacked histogram showing start times of final observations in half hour increments. Shading indicates whether
observations occurred at the last possible time of the day (based on time required to collect one observation).

3.3 Cost Details

For each experiment, data describing two types of cost are available. First there is the amount paid

to each participant. Participant reimbursement is closely related to the time needed to collect each

observation. The norm in this lab is to pay participants at a marginal rate of 1 course credit or €5

per half hour. 99% of studies that used course credit to compensate participants followed this norm

exactly. Among the studies which compensated participants with cash, 74% adhered to this rule

exactly, 12% paid less, and 14% paid more.

Although the notion that costs affect sample sizes is well accepted, it nevertheless remains an

assumption of this model. Appendix B describes tests of conditional independence (Pearl 2009)

which show that variation within the archival data is consistent with this assumption (and highly

unlikely to occur otherwise).

The second cost is due to time spent in the lab, including: 1) the number of days of data collec-

tion, 2) the timing of the last observations on the final day of data collection, 3) the time needed to

collect each observation, and 4) the number of experiments sharing the lab each day. On the final

day of data collection, participants were frequently scheduled through the end of the day, as shown

in Figure 5. Hence, a study represented by the lighter bars in Figure 5 could not have increased

its sample size from 𝑛 to 𝑛 + 1 without extending data collection into the next day. If the cost of

that extra day in the lab were high enough, it might have offset the gain from obtaining the 𝑛 + 1th

observation, leading to the pattern shown in Figure 5 (if the cost of that extra day were nil, then

a more uniform distribution of end-times would be expected). The median study took 30 minutes
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to administer and occupied the the lab on 4 separate days, sharing it with an average of 3 other

experiments each day. If spending time in the lab is costly to researchers (e.g., due to social pres-

sure not to overuse shared resources; Gneezy et al. 2014), then this cost should be highest among

researchers using the lab at the busiest times.

Researchers compensate participants in the paid pool using their individual research accounts,

but they have no analogous budget for reimbursing students with course credit. Moreover, be-

cause there is an institutional guarantee of participant reimbursement, but no check to ensure the

researcher’s (money) budget can cover the expense, researchers always have the option of work-

ing with a slightly larger sample size. These details bear directly on the definition of the model

likelihood (see Appendix C for further details).

3.4 Discussion

The data used in this study are unique in the literature on sample size and experimental power.

They describe a wide range of experiments, including “successful” studies, “unsuccessful” studies,

pre-tests, tests of major hypotheses, and everything in between. It doesn’t matter whether the

researchers analyzed their observations with state-of-the-art statistics or rudimentary procedures;

whether they pre-registered their studies or 𝑝-hacked them—every study conducted at this lab is

reported in the archive. Whatever the researchers did after the data were collected, however, is not.

This study thus measures how experimental costs affected sample sizes at this lab, regardless

of what the researchers subsequently did with their data. For this reason, the empirical results

neither suffer from publication bias, nor depend on assumptions about the researchers’ statistical

expertise or tendency to engage in questionable research practices. Indeed, the main assumption

for conduct is that researchers behaved consistently over time. On the other hand, the data lack

the necessary information for modeling researchers’ choices of which studies to run, as well as

participants’ choices of which studies to enroll in. This absence of data prohibits quantifying the

extent to which the cost interventions considered later might increase the number of experiments

conducted.
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Finally, it should be emphasized that the archival data describe activity at just one lab, limiting

the generalizability of the empirical results. This particular lab has a high capacity by comparison to

labs at similar institutions, occupying over 6,000 sq. ft. and averaging more than 275 observations

on the 10 busiest days. The time cost of data collection is probably less salient at this lab than most,

whereas researchers at institutions with smaller facilities but greater research budgets would find

the opposite to be true.

4 Empirical Model of Sample Size Choice

This section describes an empirical model corresponding with the choice problem defined by Equa-

tion (2). That is, for each experiment 𝑗, one or more researchers chooses a sample size to maximize

the expected benefits from the experiment, net of costs.2 To clarify the exposition, the model is first

presented in a simplified context: that of a single researcher choosing sample sizes for experiments

that are very similar in their payoffs and design (e.g., multiple conceptual replications of the same

phenomenon). After presenting the researchers’ cost and payoff functions in this simplified setting,

the model is then augmented to accommodate heterogeneity in the types of experiments conducted

(as well as in the researchers who run them). This section concludes with a brief discussion of the

model likelihood function; other estimation details are included in Appendix C.

4.1 Experimental Costs

The researcher incurs a cost for running experiment 𝑗 with 𝑛 participants. This cost is decomposed

into three parts: 1) the money or course credit paid to each participant, 2) the disutility from each

day of lab use, and 3) a one-time setup cost for the entire experiment.

𝐶𝑗(𝑛) = 𝑝𝑗 𝑛Í ÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Participants

+ 𝜆 [𝐷𝑗(𝑛)]𝛿Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
Lab time

+ 𝐹𝑗Í ÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÏ
Setup

, 𝜆 > 0, 𝛿 > 0 (3)

2This choice is conditioned on having already decided to conduct the experiment in one of the subject pools and
settled on a design, including the time needed to complete the task, and by extension, the amount to be reimbursed
to each participant (recall about 70%/99% of experiments using the paid/credit pool paid exactly €5/1 credit per half
hour).
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The first term on the right-hand side of Equation (3), 𝑝𝑗 𝑛, indicates the total amount paid to

participants. For experiments using participants from both the paid and credit pools, 𝑝𝑗 is a weighted

average of the cash (euros𝑗) or course credit (credits𝑗) remitted to each person (for studies run

exclusively in one pool, either euros𝑗 or credits𝑗 is zero).

𝑝𝑗 ≡ euros𝑗 + 𝛼 credits𝑗 , 𝛼 > 0 (4)

The parameter 𝛼 translates credit payments to a money scale.

The second term on the right-hand side of Equation (3), 𝜆 [𝐷𝑗(𝑛)]𝛿, represents the researcher’s

disutility from using the lab for 𝐷𝑗(𝑛) days. The number of days required for the experiment,

𝐷𝑗(𝑛), is an increasing, stepwise function of the experiment’s sample size, and is observed in the
data. The parameter 𝛿 permits either increasing (𝛿 > 1), decreasing (0 < 𝛿 < 1), or constant (𝛿 = 0)

marginal costs from each additional day, and the parameter 𝜆 translates disutility from time in the

lab to the same scale as the participant reimbursement costs.

The final term in Equation (3), 𝐹𝑗 , represents any setup costs. Because the archival data do

not contain information about setup costs, the value of 𝐹𝑗 cannot be estimated (see Appendix C).

Parameter estimates and the results of the counterfactual analysis should therefore be interpreted

in the context of the studies that were actually conducted in the lab (and not in the context of all

possible studies, including hypothetical studies that could have been run, but were not).

4.2 Expected Payoffs

Because the data do not include information describing researchers’ states of mind (e.g., prior be-

liefs, expected utilities, etc.) when they planned their experiments, the expected payoff in themodel,

𝑉 (𝑛), is based on the reduced-form approximation to Equation (1) developed by Moscarini and

Smith (2002). This approximation is derived from the general statistical properties of significance

tests, and as such, overcomes the obstacle of not observing researchers’ expected payoffs, prior

beliefs, or expected Type I/II error rates in the data. The expected payoff when running experiment
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𝑗 with a sample size of 𝑛 is:

𝑉𝑗(𝑛) = 𝑉 ∗
𝑗 − 𝜅 𝜌𝑛√𝑛

e𝜖𝑗 , 𝜌 ∈ (0, 1) , 𝜅 > 0 (5)

The first term on the right-hand side of Equation (5), 𝑉 ∗
𝑗 , represents the theoretical maximum

possible expected payoff from the experiment, if 𝑛 were to be so large that the Type I and II error

rates would be effectively zero (𝑉 ∗ ≡ lim𝑛→∞ 𝑉 (𝑛) = 𝑞 𝑢(𝐵, 𝐻) + (1 − 𝑞) 𝑢(𝐴, 𝐿); Moscarini

and Smith 2002). As with setup costs (and for the same reason—lack of data) the value of 𝑉 ∗
𝑗

cannot be estimated.

The second term in Equation (5) represents a negative deviation from the maximum expected

payoff that approaches zero as 𝑛 grows larger (hence 𝑉𝑗(𝑛) is a strictly increasing function of 𝑛).

This term’s impact on 𝑉𝑗(𝑛) depends on: 1) the latent parameters 𝜌 and 𝜅, which characterize (in

reduced form) the sensitivity of expected payoffs to larger samples relative to the money scale

established by 𝐶(𝑛); and 2) the variable 𝜖𝑗 , an idiosyncratic component of utility that allows the

expected payoff from experiment 𝑗 to differ from the researcher’s typical experiment.

Although the parameters 𝜌 and 𝜅 lack a structural interpretation and are not the focus of the

empirical analysis, a brief description follows. Moscarini and Smith (2002) refer to 1/𝜌 as an

index of the experiment’s “efficiency,” such that, all else equal, experiments with higher values of

1/𝜌 have less need for bigger samples. The quantity 𝜅e𝜖𝑗 reflects other factors influencing payoffs,

including the utility difference between correct inference and Type I/II errors, the experiment’s

measurement sensitivity, and the researcher’s prior beliefs. The 𝜅 term in particular reflects the

researcher’s global sensitivity to payoffs/costs. Equation (5) is very flexible and can reflect a wide

range of behaviors. For example, a high value of 𝜅 corresponds with expected payoffs that are flat

over a wide range of sample sizes, and thus characterizes a researcher who seems to choose sample

sizes at random (i.e., one who is apparently insensitive to costs).

4.3 Heterogeneity

To accommodate heterogeneity in the types of experiments conducted, parameters that vary by

study are denoted 𝜌𝑗 , 𝜅𝑗 , and 𝜆𝑗 (to simplify the discussion, 𝜃 refers generically to any parameter
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in the set {𝜌, 𝜅, 𝜆}). Because heterogeneity in experiments is determined in part by heterogeneity
in the researchers who design and conduct them, the latter are discussed before presenting the full

specification for experimental heterogeneity.

4.3.1 Researchers

Researchers are indexed by 𝑖. For each researcher 𝑖, there is a “typical” experiment characterized

by expected payoffs and costs according to the researcher’s values of ̇𝜌𝑖, �̇�𝑖, and ̇𝜆𝑖. Recall that

researchers are grouped according to their institutional affiliations or student status. Values of

̇𝜃𝑖’s are likely to vary systematically across these groups, much in the same way researchers from

different disciplines vary in the characteristics of their typical experiments. Letting 𝑔(𝑖) index the
segment for researcher 𝑖, the following prior distributions for the ̇𝜃𝑖’s are defined.

logit−1( ̇𝜌𝑖) ∣ ̄𝜌𝑔(𝑖) ∼ 𝑁 (logit−1( ̄𝜌𝑔(𝑖)) , 𝜏2
𝜌) (6)

log (�̇�𝑖) ∣�̄�𝑔(𝑖) ∼ 𝑁 (log (�̄�𝑔(𝑖)) , 𝜏2
𝜅) (7)

log ( ̇𝜆𝑖) ∣ ̄𝜆𝑔(𝑖) ∼ 𝑁 (log ( ̄𝜆𝑔(𝑖)) , 𝜏2
𝜆) (8)

The prior expected values of researchers’ parameters ( ̇𝜃𝑖) are functions of segment-level parameters,

denoted ̄𝜃𝑔(𝑖). These segment-level parameters are then distributed around common parameters,

denoted ̄𝜌, �̄�, and ̄𝜆, as described in Appendix C.

Recall that more than one researcher can be associated with the same experiment. Given a

team of 𝑅 researchers with indexes represented by the set R, the typical experiment for this team

is defined by averaging over the individual collaborators’ { ̇𝜃𝑖}’s for 𝑖 ∈ R. To allow for flexibility

in how this team average reflects heterogeneity among the researchers involved, this average is

specified as the generalized mean of the { ̇𝜃𝑖}’s:
𝑓𝜃(R) = ( 1

𝑅 ∑
𝑖∈R

̇𝜃𝛾𝜃
𝑖 ) 1

𝛾𝜃
, 𝛾𝜃 ≠ 0, 𝜃 ∈ {𝜌, 𝜅, 𝜆} (9)

The value of 𝑓𝜃(R) will be closer to the maximum of the { ̇𝜃𝑖}’s if 𝛾𝜃 > 1, closer to the minimum

if 𝛾𝜃 < 1, and the simple average if 𝛾𝜃 = 1. Because the ̇𝜃𝑖’s are unobserved, they are estimated

with the other model parameters using a data augmentation approach (Tanner and Wong 1987) and
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integrated over during later analysis.

4.3.2 Experiments

Each experiment 𝑗 has values of 𝜌𝑗 , 𝜅𝑗 , and 𝜆𝑗 defined as follows.

logit−1(𝜌𝑗) = logit−1( 𝑓𝜌(R𝑗)) + paid𝑗𝛽𝜌,paid + time𝑗𝛽𝜌,time (10)

log(𝜅𝑗) = log( 𝑓𝜅(R𝑗)) + paid𝑗𝛽𝜅,paid + time𝑗𝛽𝜅,time (11)

log(𝜆𝑗) = log( 𝑓𝜆(R𝑗)) + paid𝑗𝛽𝜆,paid + time𝑗𝛽𝜆,time + other𝑗𝛽𝜆,other (12)

There are many elements common to all three equations. First, the value of 𝜃𝑗 depends in part

on the value of 𝑓𝜃(R𝑗) just discussed. Second, the value of 𝜃𝑗 also depends on two observable

characteristics of experiment 𝑗. The first is “paid,” a dummy variable (coded as {−.5, .5}) indicating
whether experiment 𝑗 was conducted entirely in the paid pool. The second is “time,” the number

of (median-centered) hours needed to collect data from one study participant. Finally, 𝜆𝑗 , the cost

of time in the lab, also depends on “other,” the average number of experiments sharing the lab with

study 𝑗 each day.

4.3.3 Other model specifications

Five versions of the model are estimated, each with varying degrees of observed and unobserved

heterogeneity in experiments and researchers:

• Simple: The 𝜃𝑗’s (for 𝜃 ∈ {𝜌, 𝜅, 𝜆}) are the same for all experiments. Hence 𝜃𝑗 = ̄𝜃.

• R:Researchers have their own ̇𝜃𝑖’s, but these are determined exactly by their segmentmembership—

i.e., ̇𝜃𝑖 = 𝜃𝑔(𝑖). The ̇𝜃𝑖’s for teams of collaborating researchers mix according to the 𝑓𝜃(R𝑗)
functions defined by Equation (9), but there are no observed experimental characteristics in-

cluded in the 𝜃𝑗’s. Hence 𝑔(𝜃𝑗) = 𝑔(𝑓𝜃 (R𝑗)) where 𝑔(⋅) represents the appropriate log or
inverse-logit transformation.

• E: The 𝜃𝑗’s do not include the researcher effects, 𝑓𝜃(R𝑗). Hence 𝑔 (𝜃𝑗) = 𝑥𝑗𝛽𝜃 where 𝑥𝑗
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indicates the observed experimental variables “paid,” “time,” and “other” in Equations (10)–

(12).

• R+E: Both features specified in Models R and E are included, and Equations (10)–(12) are

unmodified. Researchers’ ̇𝜃𝑖’s, however, do not differ within segments (i.e., ̇𝜃𝑖 = 𝜃𝑔(𝑖)).
• Full: This is the specification presented in the main text (i.e., the ̇𝜃𝑖’s are distributed normally

around their segment means with prior variances 𝜏2
𝜃 ).

The five models are summarized in Table 2.

4.4 Estimation

Appendix C presents the Bayesian hyper-prior and posterior distributions of the model parameters,

and the counterfactual procedure. Here a brief sketch of the model’s likelihood function (i.e., the

likelihood of the parameters, conditional on the observed sample sizes 𝑛) is given.

The likelihood function is predicated on the optimality of the observed sample sizes given the

researchers’s expected payoffs and costs. Conditional on the model parameters, and given that the

sample size for experiment 𝑗 was chosen to be 𝑛𝑗 (and not 𝑛𝑗 + 1 or 𝑛𝑗 − 1), there is a limited range

of 𝜖𝑗’s that can rationalize 𝑛𝑗 as having provided the greatest net expected value to the researcher(s).

The likelihood of 𝑛𝑗 is accordingly defined as the total probability of 𝜖𝑗 within this valid range (see,

e.g., Lee and Allenby 2014). The distribution of the 𝜖𝑗’s is assumed to be:

𝜖𝑗 ∼ 𝑁 (0, 𝜎2) (13)

Note that although 𝑛𝑗 is a discrete variable, the resulting likelihood function is continuous in the

model parameters, conditional on the 𝑛𝑗’s.

5 Parameter Estimates

Five versions of the model are estimated, each allowing for different degrees of observed and un-

observed heterogeneity in experiments and researchers. Table 2 indicates the RMSE of posterior
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Table 2 Model Specifications and Fit

MODEL

Simple R E R+E Full

Source of heterogeneity
Observed researcher characteristics ( ̄𝜃𝑔 , 𝛾𝜃) x x x
Observed experiment characteristics (𝛽𝜃) x x x
Unobserved researcher characteristics (𝜏2

𝜃 ) x
RMSE of posterior predictions (%) 78.0 77.2 75.6 74.8 64.6

Table 3 Parameter Summary

Type Parameter Description

Cost 𝛼 Translates credit reimbursements to money scale
𝛿 Incremental cost of each day in lab

̄𝜆 Prior mean of researchers’ log lab cost
𝜏2

𝜆 Prior variance of researchers’ log lab cost
𝛽𝜆,time Difference in log lab cost from 1 hour in duration
𝛽𝜆,paid Difference in log lab cost from using only paid pool
𝛽𝜆,other Difference in log lab cost from 1 additional study

Payoff 𝜎 Scale of idiosyncratic payoff (𝜖𝑗)
�̄�, ̄𝜌 Prior mean of researchers’ payoff sensitivity

𝜏2
𝜅 , 𝜏2

𝜌 Prior variance of researchers’ payoff sensitivity
𝛽𝜅,time, 𝛽𝜌,time Difference in payoff sensitivity from 1 hour in duration
𝛽𝜅,paid, 𝛽𝜌,paid Difference in payoff sensitivity from using only paid pool

Mixing 𝛾𝜆 Day cost mixing parameter
𝛾𝜅 , 𝛾𝜌 Payoff sensitivity mixing parameters

predictions for each model. Because the full model specification presented in the previous section

fits the observed sample sizes best, and because the choice of model specification does not have a

significant qualitative impact on counterfactual results (see Appendix E), all results discussed here

pertain to the full model. Posterior estimates of parameters for all specifications are shown in Table

4.

5.1 Cost Parameters

Results related to the two types of cost (reimbursing participants and spending time in the lab) are

presented first.
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Table 4 Parameter Estimates

MODEL

Type Parameter Simple R E R+E Full

Cost 𝛼 2.72 4.55 6.44 7.67 6.66(2.03, 3.57) (3.26, 6.19) (3.80, 9.29) (5.17, 11.36) (4.52, 9.92)
𝛿 0.29 0.29 0.29 0.38 0.28(0.18, 0.41) (0.16, 0.42) (0.17, 0.43) (0.22, 0.58) (0.17, 0.43)

log ̄𝜆 −0.81 −0.38 −0.30 −1.53 0.14(−1.40,−0.33) (−1.42, 0.74) (−1.11, 0.46) (−2.87,−0.03) (−0.82, 1.08)
𝜏2

𝜆 6.36(3.84, 9.53)
𝛽𝜆,time 2.19 2.56 2.45(1.69, 2.68) (1.74, 3.42) (1.50, 3.37)
𝛽𝜆,paid 0.20 1.81 −0.40(−0.31, 0.79) (1.14, 2.40) (−1.07, 0.23)
𝛽𝜆,other 0.13 0.24 −0.02(0.03, 0.24) (0.10, 0.43) (−0.16, 0.14)

Payoff 𝜎 1.80 1.77 1.64 1.65 1.40(1.65, 1.98) (1.61, 1.98) (1.52, 1.79) (1.50, 1.83) (1.28, 1.55)
log �̄� 8.67 6.97 8.74 6.91 6.88(8.43, 8.91) (6.19, 7.87) (8.41, 9.00) (6.20, 7.64) (5.88, 7.75)

logit−1( ̄𝜌) 4.47 3.25 4.43 3.33 3.45(4.29, 4.66) (2.40, 4.17) (4.24, 4.68) (2.61, 4.24) (2.54, 4.35)
𝜏2

𝜅 0.70(0.43, 1.07)
𝜏2

𝜌 0.36(0.21, 0.68)
𝛽𝜅,time 0.84 1.04 0.87(0.36, 1.25) (0.59, 1.55) (0.36, 1.44)
𝛽𝜌,time 0.94 0.46 0.51(0.31, 1.62) (−0.08, 0.98) (−0.29, 1.46)
𝛽𝜅,paid −1.40 −0.92 −0.91(−1.83,−0.86) (−1.39,−0.43) (−1.38,−0.41)
𝛽𝜌,paid −0.23 −0.45 −0.41(−0.52, 0.11) (−0.72,−0.12) (−0.76, 0.00)

Mixing 𝛾𝜆 0.59 −1.08 0.60(−1.50, 2.69) (−2.12,−0.31) (0.18, 1.83)
𝛾𝜅 1.21 1.11 2.06(−0.69, 3.35) (−0.59, 3.29) (0.81, 3.60)
𝛾𝜌 1.01 0.73 1.17(−0.81, 2.99) (−1.11, 2.28) (−0.55, 3.05)

Note. Estimates are posterior means, with Bayesian 95% CI’s in parentheses.
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5.1.1 Participant reimbursement

The parameter 𝛼, which translates course credit to the same scale as cash payments, implies an

exchange rate of €6.66 per unit of course credit. Because a 30 minute study is typically reimbursed

at either 1 credit or €5, this exchange rate suggests researchers might receive slightly more disutility

when paying with credit than when paying with cash (although the 95% CI for 𝛼 includes €5, so

there may in fact be no difference).

Demand for observations in the two subject pools is about equally sensitive to differences

in the reimbursement rates. To make this comparison, each experiment’s arc elasticity of de-

mand (for participants) is calculated using cash and credit payments that are 5% above and be-

low those in the data (hence the arc elasticities are 𝐸𝑗 = Δ𝑛𝑗
𝑛𝑗

/Δ𝑝𝑗
𝑝𝑗
, with Δ𝑝𝑗 = .1𝑝𝑗 and Δ𝑛𝑗 =

E [𝑛𝑗∣1.05𝑝𝑗] − E [𝑛𝑗∣.95𝑝𝑗]). For experiments reimbursing participants exclusively with credits,
money, or both, median payment elasticities are −.50, −.51, and −.45, respectively, suggesting if

participant compensation was 10% higher, we would have expected the median experiment to use

about 5% fewer participants. Consistent with the counterfactual analysis presented later, this re-

sult suggests researchers are sufficiently cost sensitive to allow interventions targeting participant

reimbursements to have meaningful effects on sample sizes.

5.1.2 Days in the lab

The estimate for 𝛿 is less than 1, indicating each additional day in the lab is less costly than the

previous. Disutility from time in the lab depends on both 𝛿 and 𝜆𝑗 , and estimates for these parame-

ters indicate that adding an extra day to the median experiment would generate the same disutility

as paying an extra €1.28 to one of the participants—that is, almost no disutility at all. Because re-

searchers schedule lab time in advance of the study, this estimate reflects researchers’ anticipated

disutility from time in the lab, and not its realization, which might explain why this median is so

low. Nevertheless, even though the median is low, this cost is highly variable across experiments.

In about 3% of experiments, collecting the 𝑛+ 1th observation would have required another day in

the lab and that extra day would have generated disutility exceeding 5 𝑝𝑗 . Hence there is a small
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subset of experiments for which time in the lab might have provided a meaningful disincentive

against working with bigger samples.

Environmental factors and experimental characteristics also bear on the cost of time spent in

the lab. First, 𝛽𝜆,other is very close to 0, suggesting that on average, time costs are not meaningfully

related to the number of experiments sharing the lab each day. Second, 𝛽𝜆,time is positive, and for

each 15 minute difference in duration, average daily lab costs are about 33% higher (but against a

low baseline, as noted above). Third, experiments that paid course credit have the highest overall

costs, both in terms of lab time and participant reimbursement.

5.2 Payoff Parameters

The parameters concerning payoffs lack structural interpretation, nevertheless two patterns emerge

from their estimates: 1) experiments taking longer to administer have payoff characteristics (𝛽𝜅,time)

related to bigger samples; and 2) experiments run exclusively in the paid pool have payoff charac-

teristics (𝛽𝜅,paid and 𝛽𝜌,paid) related to smaller samples. Unfortunately it is not possible to pinpoint

the exact reasons for these results with the available data.

5.3 Mixing Parameters for Teams of Researchers

Recall the 𝛾 parameters describe how collaborating researchers’ values of ̇𝜆𝑖, �̇�𝑖, and ̇𝜌𝑖 mix to

characterize a team of researchers’ typical experiment. The estimates for 𝛾𝜆 and 𝛾𝜅 are consistent

with collaborators pooling their resources to reduce costs. First, time costs are weighted in favor

of the team member with the lowest value of ̇𝜆𝑖. Although the data do not say which researcher(s)

were present in the lab when collecting data, the low estimate for 𝛾𝜆, coupled with the fact that

the student researcher segment has the lowest estimated value of ̄𝜆𝑔, suggests the involvement of

students in lab-based research may be beneficial for sample sizes. Second, net expected payoffs are

weighted in favor of the team member with the greatest incentive for bigger samples (�̇�𝑖), which is

consistent with unrelated experiments sharing a sample to decrease costs (in such cases we would

expect the combined payoffs to reflect those of the experiment with the greatest sensitivity to bigger
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samples).

6 Manipulating Costs to Incentivize Bigger Samples

The empirical results suggest institutional policies that lower researchers’ costs might have a mean-

ingful impact on sample sizes. However, it is important not only to identify which interventions

will be most effective, but also to predict their likely effects before implementation. It would be

ideal if the institutions responsible for funding and operating research facilities could conduct pilot

studies to identify which policies to implement on a wider scale. Unfortunately, in the real world

such experimentation—even on a small scale—can have serious, unintended, and negative conse-

quences for the institution and individual researchers involved (Ioannidis 2012a). Counterfactual

analysis, however, provides a useful and feasible alternative.

Hence, with the goal of assessing the impact of potential cost-lowering interventions prior to

implementation, the estimates from the full model are used to simulate the effects of these interven-

tions on sample sizes at this lab (and more specifically, to estimate the magnitude of any improve-

ments). Furthermore, by joining these results with survey data describing typical effect and sample

sizes, the expected magnitude of improvements in experimental power due to these bigger samples

can be estimated as well. The cost interventions are presented first, followed by the simulation

results.

6.1 Counterfactual Policies

Two policies designed to lower the disutility from reimbursing participants are presented here, and

the general simulation procedure is described in Appendix C.3 Under both reimbursement policies,

the amount received by each participant would not change. However, by manipulating the impact

of remuneration on researchers’ budgets, the disutility from compensating participants would be

diminished, reducing the incentive against collecting a bigger sample. These simulations measure
3A third simulation based on expanding the lab’s capacity is reported in Appendix D. Consistent with the high

capacity of the lab and low estimated costs of spending time there, this simulation points to negligible gains from
implementing this policy.
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the impact of these policies on the set of studies observed in the data, and hence do not speak to how

the policies might have led to greater or fewer numbers of experimented conducted. Moreover, it is

assumed for the sake of these simulations that these policies would not have affected experimental

designs. For example, a study depending on a between-subjects manipulation cannot change to

a within-subjects manipulation in the context of these counterfactual simulations. Further details

about each counterfactual simulation are described next.

6.1.1 Credits intervention

The “credits” intervention targets experiments in the credit pool by raising each student’s require-

ment for and each researcher’s allotment of lab-based course credit by 𝑟%. This policy is simulated

by changing Equation (4) to

𝑝𝑗(𝑠) = euros𝑗 + (1 − 𝑠) 𝛼credits𝑗 , (14)

where 𝑠 = 𝑟/(1 + 𝑟) is the size of the subsidy generated by this policy. Hence increasing each

researchers’ credit budget (and each student’s credit requirement) by 𝑟 = 50% would decrease the

disutility of reimbursing participants with credit by 𝑠 = 1/3. This simulation assumes that students

who previously participated two 30 minute studies would be willing to participate in three under

the new policy (with 𝑟 = 50%), and that some of the students who currently do not obtain credit

would seek it out under the new, higher requirements.

6.1.2 Cash intervention

The “cash” intervention mirrors the first, but targets the paid pool. Study participants are compen-

sated at exactly the same rate, but the lab directly subsidizes this payment at a rate of 𝑠%.

𝑝𝑗(𝑠) = (1 − 𝑠) euros𝑗 + 𝛼 credits𝑗 (15)

Hence, a researcher paying a participant €5 would incur disutility as if the payment were only(1 − 𝑠)×€5. This simulation assumes the standard rate of €10/hour does not change, and that there

are enough participants to satisfy any higher demand.
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Figure 6 Changes in Sample Size (top row) and Experimental Power (bottom row) under Counterfactual
Reimbursement Policies

Cash intervention:
Paid pool only

Cash intervention:
Paid and credit pools

Credit intervention:
Paid and credit pools

Credit intervention:
Credit pool only

Relative change in sam
ple size

Absolute change in pow
er
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Notes. The top row shows the expected percent increase in sample size, and the bottom row the expected difference
in experimental power. The left columns depict changes under the “cash” and the right columns changes under the
“credit” interventions. Lines indicate estimates from a LOESS regression of simulated outcomes on sample size, with
95% confidence bounds in shown grey.

6.2 Results

The simulation results (based on parameter estimates from the full model) show that both reimburse-

ment policies can reduce the incentive against collecting bigger samples (results are qualitatively

similar for other model specifications; details are provided in Appendix E). The expected impacts

of these interventions on both sample sizes and experimental power are considered first, followed

by an analysis of the total costs of implementing these policies.

6.2.1 Implications for sample sizes

Figure 6 shows the main results of the cash and credit interventions for various levels of the subsidy

𝑠. As expected, bigger subsidies lead to bigger increases in sample size, with the largest effects
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among experiments conducted exclusively in the targeted pool (the outside columns in Figure 6).

The magnitude of the increases in sample size (the top row in Figure 6) varies across exper-

iments, with those originally run with the smallest samples generating the greatest (relative) in-

creases. But even among mid-sized experiments, both subsidies produce substantial improvements.

Specifically, among the 82 (251) studies run exclusively in the paid (credit) pool with original sam-

ple sizes between 50 and 200, a 50% subsidy leads to an average sample size that is expected to be

about 34% (43%) higher. Although expected increases among studies using both participant pools

are smaller, they are still substantial in absolute terms: A 50% subsidy of either credit or cash (but

not both) yields an expected sample size increase of about 20%. All of these expected increases in

sample size lead to decreases in total outlay from the researchers’ accounts, which has implications

for the total cost of the policies as discussed below.

6.2.2 Implications for experimental power

Although measuring the impact of cost interventions on sample sizes is the main objective of this

paper, the goal of incentivizing bigger samples is motivated by the belief that experimental power

is generally too low. It would thus be useful to know the extent to which the expected increases

in sample size translate into lower Type II error rates. Unfortunately, the lab archival data contain

insufficient information about experiments to infer expected Type II rates.

A proxy for these data is available, however, in the form of survey responses collected by

Gervais et al. (2015), which are used to estimate the average power for typical studies of different

sample sizes. This then permits a rough estimate of the expected change in experimental power

under the counterfactual policies.

The survey data comprise 135 responses from members of the Society of Experimental So-

cial Psychology (population: 937) who answered questions about their typical experiments (much

of the research conducted at this lab follows paradigms closely related to those found in social

psychology). More specifically, the survey responses include two variables of interest: 1) the

typical number of participants in a two-cell experiment, and 2) the typical effect size for such an
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experiment. Gervais et al. (2015)’s procedure is used to calculate the expected power for these

hypothetical experiments. These values are then regressed on the log of the stated sample sizes

(McFadden’s pseudo-𝑅2 for logistic regression: .37), leading to estimated Type II error rates for

typical experiments with 𝑛 observations.

The bottom row of Figure 6 shows the absolute difference in expected experimental power

corresponding with the sample size increases depicted in the top row. It is difficult to assess the

accuracy of the estimated increases in power, as they are based on data describing different groups of

researchers. Nevertheless, the estimates are not entirely without value, and point to two interesting

patterns.

First, the large expected increases in sample size among smaller experiments do not necessarily

translate to large expected increases in experimental power. This is likely due to small effect sizes

in the social sciences combined with the shape of 𝑡-test’s power curve. The second conclusion is

that the largest increases in power occur within the range of the most typical sample sizes (i.e.,

those originally run with roughly 50–200 participants). Notably, calls for larger samples in the

experimental social sciences often explicitly mention 2- and 4-cell studies with fewer than 50 par-

ticipants as being too small (e.g., Simmons 2014). Hence, this intervention is expected to achieve

the largest gains among the subset of studies that might benefit the most. Within this group of

studies, expected power is estimated to be .10 higher for studies conducted exclusively in one pool

(and about half that among studies using both pools), compared to .08 higher among studies with

less than 50 participants.

6.2.3 Cost of implementation

Of the two policies considered here, the credit intervention would be the least expensive to imple-

ment, as course credit is free to produce. Although themoney cost of expanding credit requirements

is nil, there may be institutional barriers standing in the way of this policy (previous efforts to ex-

pand the credit pool at this lab were unsuccessful).

The cash intervention appears to be highly efficient in spite of its non-zero implementation
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cost. Among studies using the paid pool (either partially or exclusively), a 50% subsidy would

be expected to increase sample sizes by about 36%. To obtain this increase in sample size, total

reimbursements to participants (from both the lab and individual researchers’ accounts) would have

needed to grow by about 32%, or €610 per month (when averaged over the 63 months in the data).

Under this 50% cash subsidy, researchers would be expected to commit about 32% less of

their available research budgets to the set of experiments described in the archive. And some, or

perhaps most of this savings would presumably be reinvested in running additional experiments.

Because limitations in the archive data precludemodeling researchers’ decisions to run experiments

and individuals’ decisions to participate, it is difficult to say how many more experiments would

have been conducted under the counterfactual policy. The estimate of €610 should therefore be

considered a lower bound on the true monthly cost to the institution.

An implication of this analysis is that funding institutions, which often have stated or implicit

goals of improving the way their researchers carry out their work, can modify researchers’ incen-

tives in ways that can bring about such improvements. However, implementing such policies may

require the commitment of additional financial resources on the part of the funding institution. That

is, institutions wanting better scientific outcomes should recognize they might need to equip their

researchers with additional resources.

7 Conclusion

Limitations on researcher’s resources can lead to them making choices that are poorly aligned

with the goals of their stakeholders, or even in conflict their own ideals of how other researchers

ought to carry out their work. We should therefore seek to understand how researchers’ incentives

affect their choices, as this knowledge will allow us to design interventions that can elicit more

normatively desirable behaviors.

This paper seeks to further our understanding of researchers’ incentives by providing the first

empirical measure of how researchers’ costs affect their chosen sample sizes, and by simulating

how cost-reducing policies might have affected them. The method used for this analysis is flexible
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and general, and as such can serve as a template for similar analyses at other institutions (including

online subject pools, e.g. Amazon MTurk).

Across a wide range of experiments and researchers, the need to reimburse participants gener-

ates a significant disincentive against working with bigger samples. At the same time, the strength

of this disincentive suggests manipulating researchers’ costs could bring about meaningful improve-

ments in sample size and experimental power. Indeed, whether researchers pay participants in

course credit or cash, a policy of (further) subsidizing participant reimbursement might be an effi-

cient strategy for increasing sample sizes. Given the long standing problem of low-powered experi-

ments in the social sciences, as well as more recent attention on scientific replication and reliability,

such improvements might have a positive impact on scientific outcomes and lead to more efficient

use of research funds.

An important caveat to the empirical results presented earlier is that they pertain only to the

Erasmus Behavioral Lab and the researchers who rely on it. Parameter estimates will differ across

institutions due to differences across populations of researchers and the resources available to them.

As such, these results should not be expected to generalize immediately to other populations of

experimental social scientists. But by combining data from multiple labs, future research might

consider how differences in research environments correlate with differences in cost sensitivity

and scientific outcomes.

In spite of this limitation, the results presented here show the potential for cost-reducing policies

to bring researchers’ incentives into closer alignment with those of their stakeholders, and generate

meaningful improvements in scientific outcomes. From a methodological perspective, this study

demonstrates the value of combining empirical quantitative methods from consumer research with

archival data in order to gain a better understanding of how researchers conduct their work. Future

work in this area will hopefully consider other settings and empirical methods (e.g., field studies).

Finally, although the goal of increasing sample sizes enjoys broad support within the scientific

community, there are other ways to increase experimental power (Maxwell 2004; Abraham and

Russell 2008) not considered here. Moreover, even though improvements in experimental power
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are expected to contribute to better scientific outcomes, these improvements by themselves cannot

solve all of the problems of reliability and replicability currently facing the experimental social

sciences. This study however demonstrates the value of considering researchers’ decisions in a

consumption framework as a way of identifying new solutions to old problems.
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A Sample Selection Procedure

After identifying and linking records for those using both participant pools, the archive contains

782 experimental records. The following steps lead to the final estimation sample of 683.

1. Each session in a “multipart” experiment (i.e., one that takes repeated measures of the same

sample over time) is registered as a separate experiment in the archive. Only the first session

is used for estimation, eliminating 21 observations.

2. Experiments that were not conducted in the lab facilities, such as thosemarked as taking place

online, at the nearby medical center, or at a local movie theater, are excluded, eliminating

another 25 observations.

3. Only experiments for which 2 or more participants registered can be used for estimation (see

Appendix C), eliminating another 53 observations. The data contain a continuum of sample

sizes between 1 and 591, with no clear line separating pre-tests and aborted studies from

“real” experiments. Hence all experiments with 𝑛 > 1 are included.

For each experiment, the following statistics are calculated. First, the time of the last observa-

tion collected on the final day of the experiment, the duration of the experiment, and an assumed

cut-off time of 5pm jointly determine whether adding another ex ante observation to the experi-

ment would require another day in the lab. Second, for each experiment 𝑗 that used both pools, the

expected payment to the 𝑛+1th participant is defined as 𝑝𝑗 = 𝜔𝑗 euros𝑗 +(1−𝜔𝑗)𝛼 credits𝑗 , where

𝜔𝑗 indicates the share of the first 𝑛𝑗 observations collected from the paid pool. Third, for each

experiment, the maximum number of observations that could have been collected in a single day

is estimated as the larger of two quantities: 1) the most observations collected on any of the first
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𝐷𝑗(𝑛𝑗)−1 days (or zero if 𝐷𝑗(𝑛𝑗) = 1); or 2) the number of observations collected on the final day

divided by the share the last day used (assuming a 9.25 hour day). For example, an experiment run

on one day with 𝑛 = 10 and a final observation collected halfway through the day has an estimated

maximum number of observations per day of 20.

B Tests for Causal Influence of 𝑝𝑗 on 𝑛𝑗

The counterfactual analyses are predicated on the assumption that participant reimbursement levels,

𝑝𝑗 , causally influence chosen sample sizes, 𝑛𝑗 . This assumption leads to testable predictions about

patterns of conditional independence among the estimation data, which, if detected, can positively

establish such a causal relationship (Pearl 2009). These tests are carried out using the ci.test func-

tion in the bnlearn R package (Scutari 2010), specifying the smc-mi-g mutual information test

statistic.

The tests support the assumption that 𝑝𝑗 causally affects 𝑛𝑗 and lend credence to the validity of

the counterfactual analysis. First, conditional on the number of days on which data were collected

(𝐷𝑗), the time needed to collect each observation (time𝑗) is significantly related to observed sample

sizes (i.e., they are conditionally dependent): time𝑗 ⫫̸ 𝑛𝑗∣𝐷𝑗 (𝑝 = .0002). Second, when also

conditioning on 𝑝𝑗 , the dependency between time𝑗 and 𝑛𝑗 is broken, thus identifying 𝑝𝑗 as amediator

between time𝑗 and 𝑛𝑗 : time𝑗 ⫫ 𝑛𝑗∣𝐷𝑗 , 𝑝𝑗 (𝑝 = .97). Third, even though this pattern of results is

consistent with two causal paths: time𝑗 → 𝑝𝑗 → 𝑛𝑗 , and the reverse, 𝑛𝑗 → 𝑝𝑗 → time𝑗 , the

latter case is highly unlikely because it would require researchers to design their experiments after

choosing their sample sizes (Pearl 2009, Definition 2.7.4).

C Estimation Details

The prior and posterior probability distributions of the model parameters are first presented, fol-

lowed by a discussion of the general approach to the counterfactual simulations.
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C.1 Bayesian Prior Distribution

The joint prior distribution of the model parameters is denoted 𝜋(Θ), and is defined as the product
of the following marginal distributions.

𝛼 ∼ 𝐺𝑎 (5, 1) 𝛿 ∼ 𝐺𝑎 (5, 5) 𝜎 ∼ 𝐼𝑛𝑣-𝐺𝑎 (4, 3)
𝛽𝜃 ∼ 𝑁 (0, 1) 𝛾𝜃 ∼ 𝑁 (1, 1) 𝜏2

𝜃 ∼ 𝐼𝑛𝑣-𝐺𝑎 (4, 3)
logit−1 ̄𝜌𝑔∣ ̄𝜌 ∼ 𝑁 (logit−1 ̄𝜌, 1) logit−1 ̄𝜌 ∼ 𝑁 (0, 1)

log �̄�𝑔∣�̄� ∼ 𝑁 (log �̄�, 1) log �̄� ∼ 𝑁 (0, 1)
log ̄𝜆𝑔∣ ̄𝜆 ∼ 𝑁 (log ̄𝜆, 1) log ̄𝜆 ∼ 𝑁 (0, 1)

(C.1)

C.2 Bayesian Posterior Distribution

The likelihood of the model parameters, conditional on the data, is obtained by assuming that the

observed sample size for experiment 𝑗 had a higher net expected utility than any other alternative

value of 𝑛𝑗 . Formally, this assumption entails two inequalities:

𝑉𝑗(𝑛𝑗) − 𝐶𝑗(𝑛𝑗) ≥ 𝑉𝑗(𝑛𝑗 + 𝜈𝑗) − 𝐶𝑗(𝑛𝑗 + 𝜈𝑗) , 𝜈𝑗 ∈ {1, 2, … } (C.2)

𝑉𝑗(𝑛𝑗) − 𝐶𝑗(𝑛𝑗) ≥ 𝑉𝑗(𝑛𝑗 − 𝜇𝑗) − 𝐶𝑗(𝑛𝑗 − 𝜇𝑗) , 𝜇𝑗 ∈ {1, 2, … , 𝑛𝑗 − 1} (C.3)

The first (second) inequality ensures the researcher could not have increased the expected net payoff

from the experiment by an ex ante increase (decrease) in sample size. The institutional guarantee

on participant reimbursement ensures these values of 𝑛𝑗 were feasible alternatives.

To derive the likelihood function, substitute Equations (3–5) into (C.2) and (C.3) and rearrange

terms to isolate 𝜖𝑗 , which leads to the following two inequality conditions for 𝜖𝑗 (see, e.g., Lee and

Allenby 2014):

𝑏ℓ
𝑗 (𝑛𝑗) ≤ 𝜖𝑗 and 𝜖𝑗 ≤ 𝑏𝑢

𝑗 (𝑛𝑗) (C.4)
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These upper and lower bounds are defined for positive integers 𝜈𝑗 and 𝜇𝑗 as:

𝑏𝑢
𝑗 (𝑛𝑗) ≡ min

𝜈𝑗≥1
( − log 𝜅𝑗 − log

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜌𝑛𝑗

𝑗√𝑛𝑗
−

𝜌𝑛𝑗+𝜈𝑗
𝑗√𝑛𝑗 + 𝜈𝑗

⎫⎪⎪⎪⎬⎪⎪⎪⎭ + log {𝜆𝑗 [𝐷𝑗(𝑛𝑗 + 𝜈𝑗) 𝛿 − 𝐷𝑗(𝑛𝑗) 𝛿] + 𝜈𝑗𝑝𝑗} )
(C.5)

𝑏ℓ
𝑗 (𝑛𝑗) ≡ max

𝑛𝑗>𝜇𝑗≥1
( − log 𝜅𝑗 − log

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜌𝑛𝑗−𝜇𝑗

𝑗√𝑛𝑗 − 𝜇𝑗
−

𝜌𝑛𝑗
𝑗√𝑛𝑗

⎫⎪⎪⎪⎬⎪⎪⎪⎭ + log {𝜆𝑗 [𝐷𝑗(𝑛𝑗) 𝛿 − 𝐷𝑗(𝑛𝑗 − 𝜇𝑗) 𝛿] + 𝜇𝑗𝑝𝑗} )
(C.6)

The values of 𝜈𝑗 and 𝜇𝑗 that minimize/maximize the upper and lower bounds are found via numeri-

cal search. Note that 𝑉 ∗
𝑗 and 𝐹𝑗 appear on both the right and left-hand sides of (C.2) and (C.3) and

thus cancel out of Equations (C.5) and (C.6). These quantities therefore cannot be estimated.

Given upper and lower bounds on 𝜖𝑗 that are consistent with the observed 𝑛𝑗 , the likelihood of

model parameters is

𝐿 (𝑛∣Θ) = 𝐽

∏
𝑗=1

∫ 𝑏𝑢
𝑗(𝑛𝑗)

𝑏ℓ
𝑗(𝑛𝑗) 1

𝜎 𝜙 (𝜖𝑗
𝜎 ) 𝑑𝜖𝑗 =

𝐽

∏
𝑗=1

1
𝜎 {Φ [𝑏𝑢

𝑗 (𝑛𝑗)
𝜎 ] − Φ [𝑏ℓ

𝑗 (𝑛𝑗)
𝜎 ]} , (C.7)

where 𝑛 denotes the vector of sample sizes for all experiments, Θ denotes the set of model parame-

ters, and 𝜙(⋅) and Φ(⋅) denote the standard normal p.d.f. and c.d.f. respectively.
Finally, the data-augmented posterior distribution of the model parameters is proportional to

𝐿(𝑛∣Θ)𝜋(Θ). Estimates of the model parameters are obtained by sampling from this distribution

via the Hamiltonian MCMC algorithm implemented in CmdStan 2.8 (Stan Development Team

2015).

C.3 Approach to Counterfactual Simulations

Samples drawn from the posterior distribution of the model parameters form the basis for the coun-

terfactual simulations. Given a set of model parameters, choice of sample size for each experiment

is simulated by 1) sampling the random component of the experiment’s payoff (𝜖𝑗) from a truncated

normal distribution bounded by 𝑏ℓ
𝑗 (𝑛𝑗) and 𝑏𝑢

𝑗 (𝑛𝑗) (𝑛𝑗 being the observed sample size for study 𝑗),

2) calculating the net expected payoff of the experiment under various counterfactual sample sizes,
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and 3) choosing the sample size with the greatest net expected payoff.

Repeating this exercise for each set of parameters sampled from the posterior distribution, and

then taking the average over the simulated draws of 𝑛𝑗 , produces a vector of expected sample sizes.

This set of sample sizes represents the baseline case for the purpose of subsequent comparison.

For each simulated policy, the procedure is repeated after manipulating the model to reflect

the conditions specified by the intervention. The output of this simulation is again a vector of

predicted sample sizes, only now the predictions fall under the auspices of the counterfactual policy.

Predicted sample sizes are then compared under the counterfactual and baseline policies.

D Expanding Lab Capacity

This section reports results for a third policy intervention not reported or discussed in the main text.

This intervention targets the incentive to minimize the amount of time spent collecting data by

doubling the lab’s capacity (it is referred to as the “lab capacity” intervention). Doubling the lab’s

capacity has two effects: 1) it decreases by half the number of days needed to run an experiment

with its original sample size, and 2) it cuts in half the number of other studies using the lab on the

same day (assuming proper coordination). Accordingly Equations (3) and (12) in the main text

become:

𝐶𝑗(𝑛) = 𝑝𝑗𝑛 + 𝜆𝑗 [𝐷𝑗(1
2𝑛)]𝛿 + 𝐹𝑗 (D.1)

log(𝜆𝑗) = log( 𝑓𝜆(R𝑗)) + paid𝑗𝛽𝜆,paid + time𝑗𝛽𝜆,time +
1
2other𝑗𝛽𝜆,other (D.2)

As with the interventions targeting reimbursement, this simulation assumes the supply of study

participants is sufficient to satisfy any higher demand.

Results are presented in Table 5. Compared to the reimbursement policies, the lab capacity

intervention would do very little to increase sample sizes, and would cost far more to implement.

Doubling the capacity of the lab leads to an average increase of about 1%, although some experi-

ments have predicted increases as high as 30–40%.

The subset of experiments with the greatest expected sample size increases (10% or more) share
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Table 5 Model Comparison

MODEL

Simple R E R+E Full

Source of heterogeneity
Observed researcher characteristics ( ̄𝜃𝑔 , 𝛾𝜃) x x x
Observed experiment characteristics (𝛽𝜃) x x x
Unobserved researcher characteristics (𝜏2

𝜃 ) x
RMSE of posterior predictions (%) 78.0 77.2 75.6 74.8 64.6
Average (%) sample size increase (policy, subject pool, subsidy)

Cash, paid only, 𝑠 = 1/3 26.8 24.6 27.1 23.8 23.6
Cash, both, 𝑠 = 1/3 13.1 11.3 11.2 10.9 12.1
Credits, both, 𝑠 = 1/3 5.3 7.3 9.1 9.6 10.2
Credits, credit only, 𝑠 = 1/3 21.6 22.0 23.8 24.2 24.1
Lab, paid only .1 .2 .2 1.0 .9
Lab, both .2 .2 .3 .3 1.1
Lab, credit only .1 .1 .2 .2 .7

a few characteristics: 1) they typically used the credit pool, 2) they had relatively small samples, 3)

they took fewer days to run, and 4) they always scheduled participants in the final time slot on the

last day of data collection. With such limited benefits, expanding lab capacity does not make sense

for this institution. However there may be other reasons to expand the capacity of this lab, and

other labs with lower capacity might find such an intervention to be more effective at increasing

sample sizes.

E Results for other Model Specifications

Counterfactual results for all models are shown in Table 5. Results are qualitatively similar across

all specifications. However, as the degree of heterogeneity increases, the model’s ability to ratio-

nalize the end-of-day effect (whereby studies are scheduled in the last slot on the final day of data

collection) improves. Hence the full model shows the highest estimated increases in sample size

under the lab policy. By contrast, estimated improvements under the cash intervention are some-

what lower, and the estimated improvements under the credit intervention are somewhat higher, for

models with more heterogeneity.
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